Возбудители острых респираторных вирусных инфекций микробиология. Принципы рациональной терапии острых респираторных вирусных инфекций у детей. Культивирование вирусов. Противовирусный иммунитет

💖 Нравится? Поделись с друзьями ссылкой

– наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами.

Микроорганизмы – наиболее древняя форма организации жизни на Земле. По количеству они представляют собой самую значительную и самую разнообразную часть организмов, населяющих биосферу.

К микроорганизмам относят:

1) бактерии;

2) вирусы;

4) простейшие;

5) микроводоросли.

Бактерии – одноклеточные микроорганизмы растительного происхождения, лишенные хлорофилла и не имеющие ядра.

Грибы – одноклеточные и многоклеточные микроорганизмы растительного происхождения, лишенные хлорофилла, но имеющие черты животной клетки, эукариоты.

Вирусы – это уникальные микроорганизмы, не имеющие клеточной структурной организации.

Основные разделы микробиологии: общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная.

Общая микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

Основной задачей технической микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, ферментов, витаминов, спиртов, органических веществ, антибиотиков и др.

Сельскохозяйственная микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для приготовления удобрений, вызывают заболевания растений и др.

Ветеринарная микробиология изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.

Предметом изучения медицинской микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

Предметом изучения санитарной микробиологии являются санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов, разработка санитарных нормативов.

2. Систематика и номенклатура микроорганизмов

Основной таксономической единицей систематики бактерий является вид.

Вид – это эволюционно сложившаяся совокупность особей, имеющая единый генотип, который в стандартных условиях проявляется сходными морфологическими, физиологическими, биохимическими и другими признаками.

Вид не является конечной единицей систематики. Внутри вида выделяют варианты микроорганизмов, отличающиеся отдельными признаками:

1) серовары (по антигенной структуре);

2) хемовары (по чувствительности к химическим веществам);

3) фаговары (по чувствительности к фагам);

4) ферментовары;

5) бактериоциновары;

6) бактериоциногеновары.

Бактериоцины – вещества, продуцируемые бактериями и губительно действующие на другие бактерии. По типу продуцируемого бактериоцина различают бактериоциновары, а по чувствительности – бактерициногеновары.

Свойства бактерий:

1) морфологические;

2) тинкториальные;

3) культуральные;

4) биохимические;

5) антигенные.

Виды объединяют в роды, роды – в семейства, семейства – в порядки. Более высокими таксономическими категориями являются классы, отделы, подцарства и царства.

Патогенные микроорганизмы относятся к царству прокариот, патогенные простейшие и грибы – к царству эукариот, вирусы объединяются в отдельное царство – Vira.

Все прокариоты, имеющие единый тип организации клеток, объединены в один отдел – Bacteria, в котором выделяют:

1) собственно бактерии;

2) актиномицеты;

3) спирохеты;

4) риккетсии;

5) хламидии;

6) микоплазмы.

Для систематики микроорганизмов используются:

1) нумерическая таксономия. Признает равноценность всех признаков. Видовая принадлежность устанавливается по числу совпадающих признаков;

2) серотаксономия. Изучает антигены бактерий с помощью реакций с иммунными сыворотками;

3) хемотакcономия. Применяются физико-химические методы, с помощью которых исследуется липидный, аминокислотный состав микробной клетки и определенных ее компонентов;

4) генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации, трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.

Чистая культура – это бактерии одного вида, выращенные на питательной среде.

3. Питательные среды и методы выделения чистых культур

Для культивирования бактерий используют питательные среды, к которым предъявляется ряд требований.

1. Питательность. Бактерии должны содержать все необходимые питательные вещества.

2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия.

3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7,2–7,6.

4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.

5. Прозрачность (чтобы был виден рост бактерий, особенно для жидких сред).

6. Стерильность.

Классификация питательных сред.

1. По происхождению:

1) естественные (молоко, желатин, картофель и др.);

2) искусственные – среды, приготовленные из специально подготовленных природных компонентов (пептона, аминопептида, дрожжевого экстракта и т. п.);

3) синтетические – среды известного состава, приготовленные из химически чистых неорганических и органических соединений.

2. По составу:

1) простые – мясопептонный агар, мясопептонный бульон;

2) сложные – это простые с добавлением дополнительного питательного компонента (кровяного, шоколадного агара): сахарный бульон, желчный бульон, сывороточный агар, желточно-солевой агар, среда Китта-Тароцци.

3. По консистенции:

1) твердые (содержат 3–5 % агар-агара);

2) полужидкие (0,15-0,7 % агар-агара);

3) жидкие (не содержат агар-агара).

4. По назначению:

1) общего назначения – для культивирования большинства бактерий (мясопептонный агар, мясопептонный бульон, кровяной агар);

2) специального назначения:

а) элективные – среды, на которых растут бактерии только одного вида (рода), а род других подавляется (щелочной бульон, 1 %-ная пептонная вода, желточно-солевой агар, казеиново-угольный агар и др.);

б) дифференциально-диагностические – среды, на которых рост одних видов бактерий отличается от роста других видов по тем или иным свойствам, чаще биохимическим (среда Эндо, Левина, Гиса, Плоскирева и др.);

в) среды обогащения – среды, в которых происходит размножение и накопление бактерий-возбудителей какого-либо рода или вида (селенитовый бульон).

Для получения чистой культуры необходимо владеть методами выделения чистых культур:

1. Механическое разобщение (метод штриха обжигом петли, метод разведений в агаре, распределение по поверхности твердой питательной среды шпателем, метод Дригальского).

2. Использование элективных питательных сред.

Колония – это видимое невооруженным глазом, изолированное скопление бактерий на твердой питательной среде.

4. Морфология бактерий, основные органы

Размеры бактерий колеблются от 0,3–0,5 до 5-10 мкм.

По форме клеток бактерии подразделяются на кокки, палочки и извитые.

В бактериальной клетке различают:

1) основные органеллы: (нуклеоид, цитоплазма, рибосомы, цитоплазматическая мембрана, клеточная стенка);

2) дополнительные органеллы (споры, капсулы, ворсинки, жгутики)

Цитоплазма представляет собой сложную коллоидную систему, состоящую из воды (75 %), минеральных соединений, белков, РНК и ДНК.

Нуклеоид – ядерное вещество, распыленное в цитоплазме клетки. Не имеет ядерной мембраны, ядрышек. Это чистая ДНК, она не cодержит белков гистонов. В нуклеоиде закодирована основная генетическая информация, т. е. геном клетки.

В цитоплазме могут находиться автономные кольцевые молекулы ДНК с меньшей молекулярной массой – плазмиды.

Рибосомы рибонуклеопротеиновые частицы размером 20 нм, состоящие из двух субъединиц – 30 S и 50 S. Рибосомы отвечают за синтез белка.

Мезосомы являются производными цитоплазматической мембраны. Мезосомы могут быть в виде концентрических мембран, пузырьков, трубочек.

Клеточная стенка – упругое ригидное образование толщиной 150–200 ангстрем. Выполняет следующие функции:

1) защитную, осуществление фагоцитоза;

2) регуляцию осмотического давления;

3) рецепторную;

4) принимает участие в процессах питания деления клетки;

5) антигенную;

6) стабилизирует форму и размер бактерий;

7) обеспечивает систему коммуникаций с внешней средой;

8) косвенно участвует в регуляции роста и деления клетки.

В зависимости от содержания муреина в клеточной стенке различают грамположительные и грамотрицательные бактерии.

У грамположительных бактерий муреиновый слой составляет 80 % от массы клеточной стенки. По Грамму, они окрашиваются в синий цвет. У грамположительных бактерий муреиновый слой составляет 20 % от массы клеточной стенки, по Грамму, они окрашиваются в красный цвет.

Цитоплазматическая мембрана. Она обладает избирательной проницаемостью, принимает участие в транспорте питательных веществ, выведении экзотоксинов, энергетическом обмене клетки, является осмотическим барьером, участвует в регуляции роста и деления, репликации ДНК.

Имеет обычное строение: два слоя фосфолипидов (25–40 %) и белки.

По функции мембранные белки разделяют на:

1) структурные;

2) пермиазы – белки транспортных систем;

3) энзимы – ферменты.

Липидный состав мембран непостоянен. Он может меняться в зависимости от условий культивирования и возраста культуры.

5. Морфология бактерий, дополнительные органеллы

Ворсинки (пили, фимбрии) – это тонкие белковые выросты на поверхности клеточной стенки. Комон-пили отвечают за адгезию бактерий на поверхности клеток макроорганизма. Они характерны для грамположительных бактерий. Секс-пили обеспечивают контакт между мужскими и женскими бактериальными клетками в процессе конъюгации. Через них идет обмен генетической информацией от донора к реципиенту.

Жгутики – органеллы движения. Это особые белковые выросты на поверхности бактериальной клетки, содержащие белок – флагелин. Количество и расположение жгутиков может быть различным:

1) монотрихи (имеют один жгутик);

2) лофотрихи (имеют пучок жгутиков на одном конце клетки);

3) амфитрихи (имеют по одному жгутику на каждом конце);

4) перитрихи (имеют несколько жгутиков, по периметру).

О подвижности бактерий судят, рассматривая живые микроорганизмы, либо косвенно – по характеру роста в среде Пешкова (полужидком агаре). Неподвижные бактерии растут строго по уколу, а подвижные дают диффузный рост.

Капсулы представляют собой дополнительную поверхностную оболочку. Функция капсулы – защита от фагоцитоза и антител.

Различают макро– и микрокапсулы. Макрокапсулу можно выявить, используя специальные методы окраски, сочетая позитивные и негативные методы окраски. Микрокапсула – утолщение верхних слоев клеточной стенки. Обнаружить ее можно только при электронной микроскопии.

Среди бактерий различают:

1) истиннокапсульные бактерии (род Klebsiella ) – сохраняют капсулообразование и при росте на питательных средах, а не только в макроорганизме;

2) ложнокапсульные – образуют капсулу только при попадании в макроорганизм.

Капсулы могут быть полисахаридными и белковыми. Они играют роль антигена, могут быть фактором вирулентности.

Споры – это особые формы существования некоторых бактерий при неблагоприятных условиях внешней среды. Спорообразование присуще грамположительным бактериям. В отличие от вегетативных форм споры более устойчивы к действию химических, термических факторов.

Чаще всего споры образуют бактерии родаBacillus иClostridium .

Процесс спорообразования заключается в утолщении всех оболочек клетки. Они пропитываются солями дипикалината кальция, становятся плотными, клетка теряет воду, замедляются все ее пластические процессы. При попадании споры в благоприятные условия она прорастает в вегетативную форму.

У грамотрицательных бактерий также обнаружена способность сохраняться в неблагоприятных условиях в виде некультивируемых форм. При этом нет типичного спорообразования, но в таких клетках замедлены метаболические процессы, невозможно сразу получить рост на питательной среде. Но при попадании в макроорганизм они превращаются в исходные формы.

6. Рост, размножение, питание бактерий

Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Бактерии размножаются поперечным бинарным делением.

На плотных питательных средах бактерии образуют скопления клеток – колонии. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

Фазы размножение бактериальной клетки на жидкой питательной среде:

1) начальная стационарная фаза(то количество бактерий, которое попало в питательную среду и в ней находится);

2) лаг-фаза (фаза покоя) (начинается активный рост клеток, но активного размножения еще нет);

3) фаза логарифмического размножения (активно идут процессы размножения клеток в популяции);

4) максимальная стационарная фаза (бактерии достигают максимальной концентрации; количество погибших бактерий равно количеству образующихся);

5) фаза ускоренной гибели.

Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки.

Среди необходимых питательных веществ выделяют органогены (углерод, кислород, водород, азот, фосфор, калий, магний, кальций).

В зависимости от источника получения углерода бактерии делят на:

1) аутотрофы (используют неорганические вещества – СО2 );

2) гетеротрофы;

3) метатрофы (используют органические вещества неживой природы);

4) паратрофы (используют органические вещества живой природы).

По источникам энергии микроорганизмы делят на:

1) фототрофы (способны использовать солнечную энергию);

2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

3) хемолитотрофы (используют неорганические соединения);

4) хемоорганотрофы (используют органические вещества).

Пути поступления метаболитов и ионов в микробную клетку.

1. Пассивный транспорт (без энергетических затрат):

1) простая диффузия;

2) облегченная диффузия (по градиенту концентрации).

2. Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).

7. Виды метаболизма бактерий

В процессе метаболизма выделяют два вида обмена:

1) пластический (конструктивный):

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

2) энергетический обмен (протекает в дыхательных мезосомах):

а) дыхание;

б) брожение.

Энергетический обмен

В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород.

По месту действия выделяют cледующие ферменты:

1) экзоферменты (действуют вне клетки);

2) эндоферменты (действуют в самой клетке).

В зависимости от катализируемых химических реакций все ферменты делят на шесть классов:

1) оксидоредуктазы (катализируют окислительно-восстановительные реакции между двумя субстратами);

2) трансферазы (осуществляют межмолекулярный перенос химических групп);

3) гидролазы (осуществляют гидролитическое расщепление внутримолекулярных связей);

4) лиазы (присоединяют химические группы по двум связям);

5) изомеразы (осуществляют процессы изомеризации, обеспечивают внутреннюю конверсию с образованием различных изомеров);

6) лигазы, или синтетазы (соединяют две молекулы, вследствие чего происходит расщепление пирофосфатных связей в молекуле АТФ).

4. Виды пластического обмена (белковый, углеводный, липидный, нуклеиновый).

Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты.

В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются до моносахаров.

В зависимости от конечных продуктов выделяют следующие виды брожения:

1) спиртовое (характерно для грибов);

2) пропионионово-кислое (характерно для клостридий);

3) молочнокислое (характерно для стрептококков);

4) маслянокислое (характерно для сарцин);

5) бутилденгликолевое (характерно для бацилл).

Липидный обмен осуществляется с помощью ферментов – липопротеиназ, летициназ, липаз, фосфолипаз.

Липазы катализируют распад нейтральных жирных кислот. При распаде жирных кислот клетка запасает энергию.

Нуклеиновый обмен бактерий связан с генетическим обменом. Синтез нуклеиновых кислот имеет значение для процесса деления клетки. Синтез осуществляется с помощью ферментов: рестриктазы, ДНК-полимеразы, лигазы, ДНК-зависимой-РНК-полимеразы.

8. Генетика макроорганизмов

Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК.

Функциональными единицами генома бактерий, кроме хромосомных генов, являются: IS-последовательности, транспозоны, плазмиды.

IS-последовательности – это короткие фрагменты ДНК. Они не несут структурных (кодирующих белок) генов, а содержат только гены, ответственные за транспозицию.

Транспозоны – это более крупные молекулы ДНК. Помимо генов, ответственных за транспозицию, они содержат и структурный ген. Транспозоны способны перемещаться по хромосоме.

Плазмиды – дополнительный внехромосомный генетический материал. Представляет собой кольцевую, двунитевую молекулу ДНК, гены которой кодируют дополнительные свойства, придавая селективные преимущества клеткам. Плазмиды способны к автономной репликации.

В зависимости от свойств признаков, которые кодируют плазмиды, различают:

1) R-плазмиды. Обеспечивают лекарственную устойчивость; могут содержать гены, ответственные за синтез ферментов, разрушающих лекарственные вещества, могут менять проницаемость мембран;

2) F-плазмиды. Кодируют пол у бактерий. Мужские клетки (F+) содержат F-плазмиду, женские (F-) – не содержат;

3) Col-плазмиды. Кодируют синтез бактериоцинов;

4) Tox-плазмиды. Кодируют выработку экзотоксинов;

5) плазмиды биодеградации. Кодируют ферменты, с помощью которых бактерии могут утилизировать ксенобиотики.

Изменчивость у бактерий:

1. Фенотипическая изменчивость – модификации – не затрагивает генотип. Они не передаются по наследству и с течением времени затухают.

2. Генотипическая изменчивость затрагивает генотип. В основе ее лежат мутации и рекомбинации.

Мутации – изменение генотипа, сохраняющееся в ряду поколений и сопровождающееся изменением фенотипа. Особенностями мутаций у бактерий является относительная легкость их выявления.

Рекомбинации – это обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом.

Механизмы реакции.

1. Конъюгация – обмен генетической информацией при непосредственном контакте донора и реципиента.

2. Слияние протопластов – обмен генетической информацией при непосредственном контакте участков цитоплазматической мембраны у бактерий, лишенных клеточной стенки.

3. Трансформация – передача генетической информации в виде изолированных фрагментов ДНК при нахождении реципиентной клетки в среде, содержащей ДНК-донора.

4. Трансдукция – это передача генетической информации между бактериальными клетками с помощью умеренных трансдуцирующих фагов. Она бывает специфической и неспецифической.

9. Бактериофаги

Вирионы фагов состоят из головки, содержащей нуклеиновую кислоту вируса, и отростка.

Нуклеокапсид головки фага имеет кубический тип симметрии, а отросток – спиральный тип, т. е. бактериофаги имеют смешанный тип симметрии.

Фаги могут существовать в двух формах:

1) внутриклеточной (это профаг, чистая ДНК);

2) внеклеточной (это вирион).

Различают два типа взаимодействия фага с клеткой.

1. Литический (продуктивная вирусная инфекция). Это тип взаимодействия, при котором происходит репродукция вируса в бактериальной клетке. Она при этом погибает. Вначале происходит адсорбция фагов на клеточной стенке. Затем следует фаза проникновения. В месте адсорбции фага действует лизоцим, и за счет сократительных белков хвостовой части в клетку впрыскивается нуклеиновая кислота фага. Далее следует средний период, в течение которого подавляется синтез клеточных компонентов и осуществляется дисконъюнктивный способ репродукции фага. При этом в области нуклеоида синтезируется нуклеиновая кислота фага, а затем на рибосомах осуществляется синтез белка. Фаги, обладающие литическим типом взаимодействия, называют вирулентными.

В заключительный период в результате самосборки белки укладываются вокруг нуклеиновой кислоты и образуются новые частицы фагов. Они выходят из клетки, разрывая ее клеточную стенку, т. е. происходит лизис бактерии.

2. Лизогенный. Это умеренные фаги. При проникновении нуклеиновой кислоты в клетку идет интеграция ее в геном клетки, наблюдается длительное сожительство фага с клеткой без ее гибели. При изменении внешних условий могут происходить выход фага из интегрированной формы и развитие продуктивной вирусной инфекции.

По признаку специфичности выделяют:

1) поливалентные фаги (лизируют культуры одного семейства или рода бактерий);

2) моновалентные (лизируют культуры только одного вида бактерий);

3) типовые (способны вызывать лизис только определенных типов (вариантов) бактериальной культуры внутри вида бактерий).

Фаги могут применяться в качестве диагностических препаратов для установления рода и вида бактерий, выделенных в ходе бактериологического исследования. Однако чаще их применяют для лечения и профилактики некоторых инфекционных заболеваний.

10. Морфология вирусов, типы взаимодействия вируса с клеткой

Вирусы – микроорганизмы, составляющие царство Vira .

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть: округлыми, палочковидными, в виде правильных многоугольников, нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров.

Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрические структуры, в которых различают несколько типов симметрии: спиральный, кубический или смешанный;

3) белки суперкапсидной оболочки – это сложные белки. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

Взаимодействие вирусов с клеткой хозяина

Существует четыре типа взаимодействия:

1) продуктивная вирусная инфекция (происходит репродукция вируса, а клетки погибают);

2) абортивная вирусная инфекция (репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);

3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);

4) вирус-индуцированная трансформация (клетка, инфицированная вирусом, приобретает новые, свойства).

11. Культивирование вирусов. Противовирусный иммунитет

Основные методы культивирования вирусов:

1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает;

2) культивирование вирусов в развивающихся куриных эмбрионах. Куриные эмбрионы выращивают в инкубаторе 7-10 дней, а затем используют для культивирования.

В результате заражения могут происходить и появляться:

1) гибель эмбриона;

2) дефекты развития;

3) накопление вирусов в аллантоисной жидкости;

4) размножение в культуре ткани.

Различают следующие типы культур тканей:

1) перевиваемые – культуры опухолевых клеток; обладают большой митотической активностью;

2) первично трипсинизированные – подвергшиеся первичной обработке трипсином; эта обработка нарушает межклеточные связи, в результате чего выделяются отдельные клетки.

Для поддержания клеток культуры ткани используют специальные среды. Это жидкие питательные среды сложного состава, содержащие аминокислоты, углеводы, факторы роста, источники белка, антибиотики и индикаторы для оценки развития клеток культуры ткани.

О репродукции вирусов в культуре ткани судят по их цитопатическому действию.

Основные проявления цитопатического действия вирусов:

1) размножение вируса может сопровождаться гибелью клеток или морфологическими изменениями в них;

2) некоторые вирусы вызывают слияние клеток и образование многоядерного синцития;

3) клетки могут расти, но не делиться, в результате чего образуются гигантские клетки;

4) в клетках появляются включения (ядерные, цитоплазматические, смешанные). Включения могут окрашиваться в розовый цвет (эозинофильные включения) или в голубой (базофильные включения);

5) если в культуре ткани размножаются вирусы, имеющие гемагглютинины, то в процессе размножения клетка приобретает способность адсорбировать эритроциты (гемадсорбция).

Особенности противовирусного иммунитета

Противовирусный иммунитет начинается со стадии презентации вирусного антигена Т-хелперами.

Иммунитет направлен на нейтрализацию и удаление из организма вируса, его антигенов и зараженных вирусом клеток. Выделяют две основные формы участия антител в развитии противовирусного иммунитета:

1) нейтрализацию вируса антителами;

2) иммунный лизис инфицированных вирусом клеток с участием антител.

12. Общая характеристика формы и периоды инфекции

Инфекция – это совокупность биологических реакций, которыми макроорганизм отвечает на внедрение возбудителя.

Для возникновения инфекционного заболевания необходимо сочетание следующих факторов:

1) наличия микробного агента;

2) восприимчивости макроорганизма;

3) наличия среды, в которой происходит это взаимодействие.

Микробный агент – это патогенные и условно-патогенные микроорганизмы.

Эпидемия – это широкое распространение инфекции в популяции с охватом больших территорий.

Пандемия – распространение инфекции практически на всю территорию земного шара.

Эндемичные заболевания (с природной очаговостью) – это заболевания, для которых отмечены территориальные ареалы с повышенной заболеваемостью данной инфекцией.

Классификация инфекций

1. По этиологии: бактериальные, вирусные, протозойные, микозы, микст-инфекции.

2. По количеству возбудителей: моноинфекции, полиинфекции.

3. По тяжести течения: легкие, тяжелые, средней тяжести.

4. По длительности: острые, подострые, хронические, латентные.

5. По путям передачи:

1) горизонтальные:

а) воздушно-капельный путь;

б) фекально-оральный;

в) контактный;

г) трансмиссивный;

д) половой;

2) вертикальные:

а) от матери к плоду (трансплацентарный);

б) от матери к новорожденному в родовом акте;

3) артифициальные (искусственные).

В зависимости от локализации возбудителя различают:

1) очаговую инфекцию;

2) генерализованную инфекцию. Наиболее тяжелая форма – сепсис.

Выделяют следующие периоды инфекционных болезней:

1) инкубационный; от момента проникновения возбудителя в организм до появления первых признаков заболевания;

2) продромальный; характеризуется появлением первых неясных общих симптомов. Возбудитель интенсивно размножается, колонизирует ткань, начинает продуцировать ферменты и токсины. Продолжительность – от нескольких часов до нескольких дней;

3) разгар болезни; характеризуется появлением специфических симптомов;

а) летальный исход;

б) выздоровление (клиническое и микробиологическое). Клиническое выздоровление: симптомы заболевания угасли, но возбудитель еще находится в организме. Микробиологическое – полное выздоровление;

в) хроническое носительство.

13. Возбудители инфекций и их свойства

Среди бактерий по способности вызывать заболевание выделяют:

1) патогенные виды потенциально способны вызывать инфекционное заболевание;

Патогенность – это способность микроорганизмов, попадая в организм, вызывать в его тканях и органах патологические изменения. Это качественный видовой признак.

2) условно-патогенные бактерии могут вызывать инфекционное заболевание при снижении защитных сил организма;

Реализация патогенности идет через вирулентность – это способность микроорганизма проникать в макроорганизм, размножаться в нем и подавлять его защитные свойства.

Это штаммовый признак, он поддается количественной характеристике. Вирулентность – фенотипическое проявление патогенности.

Количественными характеристиками вирулентности являются:

1) DLM (минимальная летальная доза) – это количество бактерий, при введении которых в организм лабораторных животных получают 95–98 % гибели животных в эксперименте;

2) LD 50 – это количество бактерий, вызывающее гибель 50 % животных в эксперименте;

3) DCL (смертельная доза) вызывает 100 %-ную гибель животных в эксперименте.

К факторам вирулентности относят:

1) адгезию – способность бактерий прикрепляться к эпителиальным клеткам;

2) колонизацию – способность размножаться на поверхности клеток, что ведет к накоплению бактерий;

3) пенетрацию – способность проникать в клетки;

4) инвазию – способность проникать в подлежащие ткани. Эта способность связана с продукцией таких ферментов, как гиалуронидаза и нейраминидаза;

5) агрессию – способность противостоять факторам неспецифической и иммунной защиты организма.

К факторам агрессии относят:

1) вещества разной природы, входящие в состав поверхностных структур клетки: капсулы, поверхностные белки и т. д. Многие из них подавляют миграцию лейкоцитов, препятствуя фагоцитозу;

2) ферменты – протеазы, коагулазу, фибринолизин, лецитиназу;

3) токсины, которые делят на экзо– и эндотоксины.

Экзотоксины – высокоядовитые белки. Они термолабильны, являются сильными антигенами, на которые в организме вырабатываются антитела, вступающие в реакции токсинонейтрализации. Этот признак кодируется плазмидами или генами профагов.

Эндотоксины – сложные комплексы липополисахаридной природы. Они термостабильны, являются слабыми антигенами, обладают общетоксическим действием. Кодируются хромосомными генами.

14. Нормальная микрофлора человека

Нормальная микрофлора человека – это совокупность множества микробиоценозов, характеризующихся определенными взаимосвязями и местом обитания.

Виды нормальной микрофлоры:

1) резидентная – постоянная, характерная для данного вида;

2) транзиторная – временно попавшая, нехарактерная для данного биотопа; она активно не размножается.

Факторы, влияющие на состояние нормальной микрофлоры.

1. Эндогенные:

1) секреторная функция организма;

2) гормональный фон;

3) кислотно-основное состояние.

2. Экзогенные условия жизни (климатические, бытовые, экологические).

В организме человека стерильными являются кровь, ликвор, суставная жидкость, плевральная жидкость, лимфа грудного протока, внутренние органы: сердце, мозг, паренхима печени, почек, селезенки, матка, мочевой пузырь, альвеолы легких.

Нормальная микрофлора выстилает слизистые оболочки в виде биопленки. Этот каркас состоит из полисахаридов микробных клеток и муцина. Толщина биопленки – 0,1–0,5 мм. В ней содержится от нескольких сотен до нескольких тысяч микроколоний.

Этапы формирования нормальной микрофлоры желудочно-кишечного тракта (ЖКТ):

1) случайное обсеменение слизистой. В ЖКТ попадают лактобациллы, клостридии, бифидобактерии, микрококки, стафилококки, энтерококки, кишечная палочка и др.;

2) формирование сети из ленточных бактерий на поверхности ворсинок. На ней фиксируются в основном палочковидные бактерии, постоянно идет процесс формирования биопленки.

Нормальная микрофлора рассматривается как самостоятельный экстракорпоральный орган с определенной анатомической структурой и функциями.

Функции нормальной микрофлоры:

1) участвие во всех видах обмена;

2) детоксикация в отношении экзо– и эндопродуктов, трансформация и выделение лекарственных веществ;

3) участие в синтезе витаминов (группы В, Е, Н, К);

4) защита:

а) антагонистическая (связана с продукцией бактериоцинов);

б) колонизационная резистентность слизистых оболочек;

5) иммуногенная функция.

Наибольшей обсемененностью характеризуются:

1) толстый кишечник;

2) ротовая полость;

3) мочевыделительная система;

4) верхние дыхательные пути;

Микробиология 20.09.96.

Возбудители ОРВИ (острых респираторных инфекций)

ОРЗ вызывается многими возбудителями: их около 200. Среди них есть прокариоты: бактерии, микоплазмы, хламидии. Диагноз острых респираторных вирусных инфекций ставит уже врач. Терапевты уже дифференцируют по клинической симптоматике, какое это ОРЗ: вирусное или бактериальное. Среди возбудителей ОРВИ: вирусы гриппы, парагриппа, риновирусы, реовирусы и т.д. Известно около 200 возбудителей ОРВИ. Только лабораторным методом можно доказать что заболевание вызвано вирусом гриппа и т.д. Даже в период эпидемии каждый 10-й диагноз грипп является ошибочным, в неэпидемический период число ошибок достигает 30-40%.

ГРИПП (от франц. grippe - схватывать, предложено врачом Сабажем в 19 веке). Синоним итальянское инфлуенца.

Вирусная природа гриппа было доказана в 1933 году. Английский ученый Смит и соавторы выделили от больного ОРЗ вирус. В нашей стране двумя выдающимися учеными А.А.Смородинцевым и Л.А.Зильбером в 1940 году был выделен другой вирус гриппа который отличался от вируса выделенного в 1933 году. В 1974 году был открыт еще один вирус гриппа. В настоящее время известно 3 вируса гриппа обозначаемых А,В,С. Все те неисчислимые бедствия которые приносит грипп связаны с вирусом гриппа А. Вирус гриппа В также периодически вызывает подъемы заболеваемости, но это не так страшно, как эпидемии и пандемии, вызываемые вирусом гриппа А.

Вирус гриппа А, изучен вплоть до субмолекулярного уровня. Все вирусы гриппа содержать РНК, в центре частиц вируса находится рибонуклеопротеид, который состоит из 8 фрагментов - 8 генов. 1-6 гены кодируют каждый синтез одного белка, а 7-8 гены кодируют по 2 белка; итого 10 белков кодирует геном вируса гриппа. Снаружи РНП покрыт белковой оболочкой, а еще снаружи покрыты суперкапсидов. Суперкапсид вируса гриппа состоит из липопротеиновой мембраны, тех клеток в которых размножался вирус (так как выходит из клетки путем отпочкования). Интересно, что если разные вируса гриппа А размножаются в разных клетках их поверхности могут значительно различаться. В суперкапсид встроены 2 белка - фермента. Они встроены в виде шипов:

    гемагглютинин 500-600 шипов. Этот фермент имеет сродство к мукопротеидным рецепторам клеток, то есть он с ними реагирует и вирус адсорбируется на поверхности чувствительных клеток. Такие рецепторы есть на поверхности эритроцитов. Следствие адсорбции вируса на эритроциты является гемагглютинация. Отсюда метод индикации вируса: взять кровь и добавить каплю жидкости содержащей вирус: через 1.5 минуты наблюдаем есть агллютинация или нет. Если вируссодержащую жидкости раститровать и к каждому разведению добавить эритроциты, мы определим количество вируса А. При наличии иммунных сывороток к известным антигенам мы вируссодержащую жидкость смешивает с сывороткой: гомологичные антитела связывают с гемагглютинином и наблюдается реакция торможения гемагглютинации. К настоящему времени известно что вирус гриппа имеет несколько видов гемагглютинина. У вирусов гриппа человека известно 4 антигенных типа гемагглютинина (обозначается Н). Известные следующие антигенных варианты: Н1(с антигенными вариантами 1,2,3), Н2(с антигенными вариантами 1,2,3) Н3(с антигенными вариантами 1,2,3).

    нейраминидаза между шипами гемагглютинина. Нейраминидаза - это фермент расщепляющей нейраминовую кислоту, а она входит в группу сиаловых кислот, которые находятся в клеточных мембранах. Роль нейраминидаз - участие в созревании клетки, но не помощь в проникновении и выходе из клеток. У вирусов гриппа А человека известно 2 антигенных варианта типа нейраминидазы N1 N2.

Внешне вирус выглядит как морской еж - это сферическое образование где - то 100 нм в диаметре, покрытое шипами.

Антигенные свойства вируса гриппа А.

У вирусов гриппа известно несколько антигенов: один антиген это S-антиген, он связан с рибонуклеопротеидом, то есть внутренний антиген. По S-антигену вирусы гриппа легко разделяются на вирусы гриппа А, гриппа В, гриппа С. Антигенный перекресток тут невозможен, так как имеется строгая антигенная специфичность В учебнике сказано что у вируса гриппа есть V-антиген, а на самом деле так обозначают поверхностные антигены: сюда входят гемагглютинин и нейраминидаза. Известны следующие типы вируса гриппа:

    вирус гриппа А с антигенами Н0N1

    вирус гриппа А с антигенами H1 N1. Появился в 1947 году, проциркулировал 10 лет (до 1957 года), на 20 лет исчез, вновь появился в 1957 году и циркулирует до сих пор.

    H2 N2 появился в 1957 году проциркулировал 10 лет и исчез.

    H3N2 появился в 1968 году, циркулирует до сих пор.

Вирус гриппа Н0N1 был открыт в 1933 году, и циркулировал до 1947 года и исчез и уже 50 лет его никто его не выделяет сейчас.

Таким образом, вирус гриппа А, которые вызывает заболевание сейчас может быть 2-х видов. Когда были выяснены эти обстоятельства, выяснилось что вирус циркулировал какое-то время, вызвал эпидемию и исчез в 1957 году, потому что появился новый вирус отличающие по 2-м антигенам и по гемагглютинину и по нейраминидазе. Это был пандемия: переболело 2/3 населения Земли. Исчез этот вирус, но в 1968 году была опять эпидемия. Возник новый вирус, отличающиеся по антигену Н. Таким образом, обнаруживается закономерность: возникновение нового вируса зависит от формирования иммунитета у людей. Чем больше отличается новый вирус от предыдущего, тем выше заболеваемость. Эта закономерность дает как теоретическое обоснование, как действовать чтобы не допускать таких подъемов заболеваемость.

Изменчивость вируса гриппа А. Изменчивость вируса гриппа обусловлена двумя генетическими процессами:

    генетический шифт возникает в результате полной смены гена и обусловлен обменом генов при одновременной репродукции в клетке двух вирусов гриппа

    антигенный дрейф - изменение антигенного состава, без полной замены антигена. Внутри антигена происходят небольшие изменения. В основе антигенного дрейфа лежат точечные мутации гена, а как следствие изменения антигена.

Типы инфекций. Существует три типа инфекций:

    продуктивная инфекция: вирус адсорбируется, проникает, репродуцируется и выходит. Клетка при этом разрушается. Если это происходит в организме, то возникают тяжелые заболевания.

    Бессимптомная инфекция: скорость репродукции небольшая. Клетки страдают меньше и на уровне организма заболевание течет бессимптомно, но заболевший является источником инфекции

    латентная инфекция: этот тип инфекции пока исследования только на клеточных культурах in vitro. Имеет ил место этот тип инфекции в организме человека не известно.

Оказывается после проникновения вируса, когда освобождается РНП он прикрепляется к ядру клетки и так существует в клетке. РНП для клетки чужеродная структура, а наследственность клетки консервативна, то есть не будет терпеть внутри себя что-то инородное, но, тем не менее, РНП почему-то существует внутри клетки. РНП передается клеточному потомству. Считается что 20 летний провал вируса связан именно и этим механизмом.

ЗАБОЛЕВАНИЯ ВЫЗЫВАЕМЫЕ ВИРУСОМ ГРИППА: известно 2 пандемии гриппа: первая - испанка в 18-20 гг. нашего века, пандемия в 1957 году. Во время нее от гриппа умерло 20 млн. человек. Вирус гриппа и возбудители ОРЗ сокращают среднюю продолжительность жизни приблизительно на 10 лет.

Грипп - антропоноз. Вируса гриппа человека вызывают заболевания только у человека (имеются лишь сообщения что повышение заболеваемости гриппом у людей повышается заболеваемость ОРЗ у животных). Путь заражения - воздушно-капельный. Вирус не устойчив во внешней среде.

Ворота инфекции - верхние дыхательные пути. Вирусы гриппа имеют сродство к призматическому эпителию верхних дыхательных путей. При репродукции клетки страдают от незначительных нарушений до некроза клеток. Скорость репродукции вируса очень высокая и за 2-3 часа популяция вирусов на несколько порядков возрастает. Поэтому инкубационный период гриппа короткий. На первых стадиях заболевания изменения дегенеративно-дистрофические. Воспаление не возникает. Если в эти ранние периоды развивается пневмония, то она опять же проходит без яркой воспалительной реакции. Поздние бронхиты и пневмонии чаще развиваются при присоединении бактериальной инфекции. Если исследовать секционный материал людей погибших от гриппозной пневмонии, то всегда обнаруживается при микроскопии стафилококки, таким образом, это, как правило, микст-инфекции.

ОСЛОЖНЕНИЯ ПРИ ГРИППЕ:

    интоксикация: температура 39-40, обусловлена или самими вирусными частицами или осколками вируса. Значительно изменяется стенка сосудов с повышением проницаемости (геморрагии), поэтому в остром периоде противопоказана баня.

    Со стороны ЦНС: за счет действия вирусных белков, за счет действия нейротропных вирусов.

МЕХАНИЗМЫ ПРОТИВОВИРУСНОЙ ЗАЩИТЫ. Главную роль в выздоровлении и защите от гриппа принадлежит антителам против антигенов и ферментов вируса. Иммунитет при гриппе напряженный, типоспецифический. Ингибиторы альфа бета и гамма - реагируют активным центром с гемагглютинином и вирус не может адсорбироваться на клетке. Наличие и количество ингибитора входит в генотип человека, являясь его индивидуальной особенностью. Следующий механизм защиты - системы интерферона. Бывают интерфероны альфа, бета и гамма. В норме интерферонов у человека нет, интерферон начинает вырабатываться клеткой, когда она или поражается вирусом или стимулируется каким-либо индуктором. Способность продуцировать интерферон тоже заложена в генотипе человека.

ЛАБОРАТОРНАЯ ДИАГНОСТИКА.

Существует три основных метода:

    экспресс диагностика: иммунофлюресцентный метод, ИФА. Метод иммунофлюоресценции: больному в носовой ход вводится шлифованное стекло и делается легкий соскоб. Потом стекла обрабатывают люминесцирующими сыворотками и если в клетке есть вирусный антиген, антитела буду с ним реагировать и мы увидит свечение.

    Вирусологический. Берут смыв из носоглотки больного, заражают куриный эмбрион, после инкубации проверяют наличие вируса по реакции гемагглютинации, титр вируса определяют в реакции торможения гемагглютинации.

    серодиагностика. Диагностическим критерием является нарастание титра антител. Это ретроспективный метод.

ЛЕЧЕНИЕ: одним их эффективных методов лечения гриппа является применение противогриппозных сывороток. Это лошадиные сыворотки, получаемые путем гипериммунизации гриппозной вакциной. Полученную сыворотку лиофильно сушат, смешивают с сульфаниламидными препаратами и применяют интраназально. Может вызывать аллергическую реакцию, поэтому сейчас используют противогриппозные гамма-глобулины. Используют также интерферон интраназально, что особенно эффективно в начальной стадии заболевания. Применяют также препараты подавляющие репродукцию вируса ремантадин, рибоверин и др.

ПРОФИЛАКТИКА ГРИППА: академик Беляков пришел к выводу что самым надежным является вакцинация. На данный момент существуют:

    живая гриппозная вакцина (разработанная Смородинцевым) вводится интраназально

    убитая вакцина - содержит вирусы, обработанные формалином

    субвирионная вакцина, содержит выделенный из вирусных частиц гемагглютинин.

    Синтетическая вакцина, содержит синтезированный химическим путем гемагглютинин.


Лечебное питание (диета) Симптоматическое лечение

Этиотропная терапия

Этиотропная терапия острых респираторных заболеваний в зависимости от возбудителей их вызывающих может быть:

1) противовирусной (при ОРВИ вирусной этиологии);

2) антибактериальной (при ОРВИ бактериальной, микоплазменной или хламидийной этиологии);

3) комплексной (при вирусно‑бактериальных инфекциях, вирусных инфекциях с бактериальными осложнениями).

Противовирусная терапия включает в себя применение биологических (интерфероны и иммуноглобулины) и химиотерапевтических средств.

Успех противовирусной терапии ОРВИ неотделим от соблюдения обязательных условий:

1) экстренное применение;

2) регулярность приема;

3) соответствие препаратов этиологии ОРВИ.

Наиболее универсальными противовирусными препаратами являются препараты человеческого лейкоцитарного интерферона. В настоящее время отечественной медицинской промышленностью выпускаются лекарственные формы, предназначенные для инъекций (внутримышечных, подкожных, внутривенных) и инстилляций (интраназального и ингаляционного применения).

Человеческий лейкоцитарный интерферон для инстилляций обладает малой противовирусной активностью (до 10 000 МЕ) и поэтому требует многократного его применения и с лучшими результатами используется при лечении детей, нежели взрослых. Его закапывают в носовые ходы по 5 капель не менее 5 раз в сутки (в течение 2-3 дней) при появлении первых клинических симптомов ОРВИ.

Препараты интерферона для инъекций обладают высокой противовирусной активностью (100 000, 250 000, 500 000, 1 000 000 МЕ) и поэтому более пригодны при лечении ОРВИ у взрослых.

Показаниями для назначения препарата является среднетяжелое и тяжелое клиническое течение вирусного ОРЗ, а также состояние функционального иммунодефицита. Противопоказаний к назначению препарата нет. Препарат может применяться в комплексе с другими патогенетическими и симптоматическими средствами. Следует избегать сочетанного применения с кортикостероидными гормонами! Когда гормоны исключить невозможно, их рекомендуется применять разобщенно с интервалом до 6 ч.

При вирусных ОРЗ предпочтительнее короткие, но интенсивные курсы из 3-6 инъекций (по 100 000-1 000 000 МЕ в зависимости от степени тяжести и возраста больного 1-2 раза в день) в течение первых 3‑х суток заболевания, далее по показаниям (тяжелое течение, развитие осложнений, для достижения стабилизации клинико‑иммунологического эффекта) курс может быть продлен с кратностью введения через день в 1-2 инъекции в последующие недели.

Хорошая клиническая эффективность достигнута при ингаляционном применении препаратов интерферона в аэрозоле с различной степенью дисперсности частиц в зависимости от уровня поражения респираторной системы.

Этому есть патогенетические и фармакокинетические обоснования:

препарат доставляется вслед за возбудителем к месту его непосредственной колонизации и размножения;

препарат прямо в непораженных клетках вызывает состояние невосприимчивости к вирусной инфекции;

препарат повышает активность местных факторов иммунитета;

введенный ингаляционно интерферон приобретает иные фармакокинетические свойства;

он дольше сохраняется в организме, а преимущественное распределение и депонирование в тканях дыхательной системы позволяет снизить его терапевтическую дозу.

Степень дисперсности ингалируемого аэрозоля зависит от уровня поражения дыхательной системы:

1) при локализации поражения в трахее и крупных бронхах целесообразно ингалировать аэрозоли средней степени дисперсности с диаметром частиц аэрозоля 1-5 микрон;

2) при локализации поражения в мелких бронхах, бронхиолах и альвеолах показано введение аэрозолей мелкой степени дисперсности с диаметром частиц менее 1 микрона.

Кратность ингаляций зависит от дня болезни. При применении интерферона в первые сутки заболевания порой бывает достаточным однократной ингаляции интерферона в дозе 500 000-1 000 000 МЕ. При сохраняющейся симптоматике ингаляции продолжают ежедневно первые 3 дня, далее через день, при необходимости уменьшая степень дисперсии и дозу. При пневмониях курс может составить до 10-15 ингаляций.

Иммуноглобулины

Наибольшей эффективностью обладает противогриппозный донорский гамма‑глобулин (иммуноглобулин), который вводят внутримышечно при тяжелых формах гриппа взрослым по 3 мл (3 дозы); детям - 1 мл (1 доза). Указанные дозы назначают повторно через 8 ч при выраженных симптомах интоксикации. При отсутствии противогриппозного иммуноглобулина используют в тех же дозах иммуноглобулин человеческий нормальный, который также содержит, хоть и в меньших количествах, антитела против вирусов гриппа и других возбудителей ОРЗ. Иммуноглобулины лучше назначать в ранние сроки болезни, поскольку специфическое действие этих препаратов отмечается лишь при введении их в первые 3 дня болезни.

Специфические противовирусные препараты применяют в соответствии с предполагаемой этиологией ОРЗ.

При гриппе А применяют следующие препараты:

1. Ремантадин (0,05 г) назначают в ранние сроки болезни особенно в первые сутки, когда он дает выраженный эффект, по схеме:

1) 1‑й день болезни по 100 мг 3 раза в день после еды (в 1‑е сутки возможен однократный прием до 300 мг);

2) 2‑й и 3‑й дни болезни по 100 мг 2 раза в день после еды;

3) 4‑й день болезни 100 мг 1 раз в день после еды.

Он эффективен при гриппе, вызванном вирусом типа А и лишь при раннем его использовании - в первые часы и сутки от начала заболевания.

2. Более эффективными являются арбидол и виразол (рибавирин), действующие на вирусы гриппа как типа А, так и В, при приеме их тоже в начале заболевания по 0,2 г 3 раза в день до еды в течение 3-4 дней.

3. Оксолиновая мазь (0,25-0,5 %‑ная в тубах) применяется (смазывают носовые ходы 3-4 раза в день в течение первых 3-5 дней заболевания). Она смягчает катаральные явления и сокращает их длительность. Терапевтический эффект оказывает лишь в первые дни болезни.

При аденовирусной инфекции с явлениями конъюнктивита, кератита, кератоконъюнктивита показаны:

1) дезоксирибонуклеаза 0,05 %‑ный раствор по 1-2 капли в конъюнктивальную складку;

2) полудан (порошок в ампулах по 200 мкг) применяют в виде глазных капель и (или) инъекций под конъюнктиву. Раствор полудана, предназначенный для инстилляции (закапывания) в глаз, готовят путем растворения содержимого ампулы (200 мкг порошка) в 2 мл дистиллированной воды. Готовый раствор при хранении его в холодильнике можно использовать в течение 7 дней. Его закапывают в конъюнктивальный мешок больного глаза 6-8 раз в день. По мере стихания воспалительных явлений число инстиляций сокращают до 3-4 раз в день.

Для субконъюнктивальных инъекций содержимое ампулы растворяют в 1 мл воды для инъекций и вводят по 0,5 мл (100 мкг) под конъюнктиву глаза ежедневно или через день (растворенный для инъекции препарат хранению не подлежит). Курс из 10-15 инъекций проводят в стационарных условиях под наблюдением офтальмолога:

1) бонафтан в виде таблеток для приема внутрь и 0,05 %‑ной глазной мази в тубах по 10 г;

2) теброфен (0,25-0,5 %‑ная глазная мазь в тубах);

3) флореналь (0,25-0,5 %‑ная глазная мазь в тубах).

Глазные мази закладывают за веки 3 раза в день, к концу лечения - 1-2 раза в день. Длительность лечения 10-14 дней.

При герпес‑вирусных ОРЗ назначают ацикловир внутривенно 5-2,5 мг/кг каждые 8 ч (15-37,5 мг/кг в день) или видарабин внутривенно 10-20 мг/кг в сутки в течение 7-10 дней, цикловакс внутрь по 200 мг 5 раз в день в течение 5 дней.

Сульфаниламидные препараты и антибиотики (тетрациклин, эритромицин, пенициллин и др.) не оказывают никакого влияния на вирусы‑возбудители ОРВИ, они не уменьшают частоты осложнений. При их назначении с профилактической целью пневмонии у больных гриппом возникают чаще, чем у больных, не получавших этих препаратов. Антибактериальные средства, необоснованно применяемые при вирусных ОРЗ, оказывают негативное влияние на состояние иммунной системы организма и на неспецифические защитные механизмы.

Существуют строгие показания к назначению антибактериальных химиопрепаратов и антибиотиков - только при крайне тяжелых и осложненных формах гриппа и только в условиях инфекционного стационара.

Антибактериальная терапия показана при ОРЗ микоплазменной, хламидийной и бактериальной этиологии, вторичных (бактериальных) осложнениях вирусных ОРЗ, активации хронической бактериальной инфекции на фоне течения вирусного ОРЗ. Выбор антибиотика зависит от предполагаемой этиологии ОРЗ, бактериальной инфекции, результатов бактериологического исследования мокроты и определения чувствительности выделенных микроорганизмов к антибиотикам.

Основой успеха антибактериальной терапии является соблюдение следующих принципов:

1) своевременность назначения;

2) соответствие чувствительности микроорганизма к выбранному препарату;

3) выбор наиболее эффективного и наименее токсичного препарата;

4) учет фармакокинетических особенностей препарата;

5) динамический контроль чувствительности выделенного микроорганизма к антибиотикам;

6) своевременность отмены препарата (профилактика токсического, аллергенного и иммунодепрессивного действия препаратов);

7) профилактика микозов (грибковых заболеваний) при длительном применении антибиотиков (назначение противогрибковых препаратов).

Патогенетическое лечение всех форм гриппа и других ОРЗ направлено на дезинтоксикацию, восстановление нарушенных функций организма, профилактику осложнений.

Дезинтоксикационная терапии

Больному во время лихорадочного периода при легких и среднетяжелых формах течения показано обильное питье (до 1-1,5 л/сутки) жидкости, содержащей витамины С и Р (5 %‑ный раствор глюкозы с аскорбиновой кислотой, чай (лучше зеленый), клюквенный морс, настой или отвар шиповника, компоты, фруктовые соки, особенно грейпфрутовый и черноплодной рябины), минеральные воды.

Патогенетическая терапия при тяжелых формах, протекающих с выраженной интоксикацией, усиливается за счет дезинтоксикационных мероприятий - внутривенного капельного введения растворов глюкозы 5 %‑ной - 400 мл, Рингер‑лактата (лактасол) - 500 мл, реополиглюкина - 400 мл, гемодеза - 250 мл (не более 400 мл в день на протяжении не более 4 дней), изотонического раствора натрия хлорида суммарно - до 1,5 л/сутки на фоне форсированного диуреза с помощью 1 %‑ного раствора лазикса или фуросемида 2-4 мл во избежание отека легких и мозга. Назначение коферментов (кокарбоксилазы, пиридоксальфосфата, липоевой кислоты) улучшает в тканях и способствует уменьшению интоксикации.

При выраженных явлениях вторичного токсического поражения головного мозга рекомендуется внутривенное вливание 5 мл 20 %‑ного раствора пирацетама в 10 мл изотонического раствора натрия хлорида 1 раз в день в течение 5-6 дней, затем по 0,2 г пирацетама в таблетках 3 раза в день. При выраженном токсикозе назначаются кортикостероидные препараты - преднизолон 90-120 мг/сутки или эквивалентные дозы других глюкокортикоидов, оксигенотерапия.

Антигеморрагическая терапия (профилактика кровотечений) заключается в назначении адекватных доз аскорбиновой кислоты, солей кальция (хлорида, лактата, глюконата), рутина. При тяжелых формах антигеморрагическая терапия сводится к борьбе с развивающимся ДВС‑синдромом.

Улучшение микроциркуляции может быть достигнуто как за счет нормализации динамики крови в малом круге кровообращения, так и за счет нормализации системной гемодинамики.

Нормализация гемодинамики (циркуляции крови) в малом круге кровообращения достигается назначением следующих дыхательных средств:

1) камфора оказывает тонизирующее влияние на сердечно‑сосудистую систему (усиливает сократительную функцию миокарда) и дыхательный аппарат (выделяясь через слизистую оболочку дыхательных путей, оказывает бактерицидное действие, вызывает отхаркивающий эффект, улучшает альвеолярную вентиляцию). Рекомендуется подкожное введение камфорного масла по 2-4 мл 3-4 раза в день. При лечении камфорой возможно образование инфильтратов (олеомы);

2) сульфокамфокаин (10 %‑ный 2 мл в ампулах) - соединение сульфокамфорной кислоты и новокаина, обладает всеми положительными свойствами камфоры, но не вызывает образования олеом. Быстро всасывается при подкожном и внутримышечном введении, может вводиться внутривенно. Применяют 2-3 раза в день;

3) кордиамин - 25 %‑ный раствор стимулирует дыхательный и сосудодвигательный центры, применяется по 2-4 мл подкожно, внутримышечно и внутривенно 3 раза в день при выраженной артериальной гипертензии у больных тяжелой и крайне тяжелой степенями ОРВИ, особенно осложненных пневмонией и в периоды кризиса.

В случае значительного снижения сократительной способности левого желудочка (при развитии инфекционно‑аллергического миокардита, осложняющего течение тяжелого гриппа и других ОРЗ) возможно применение сердечных гликозидов - 0,06 %‑ный раствор коргликона до 1 мл, 0,05 %‑ный раствор строфантина до 1 мл. Следует помнить о гиперчувствительности воспаленного миокарда к сердечным гликозидам и применять их внутривенно капельно в небольших дозах (например, 0,3 мл 0,05 %‑ного раствора строфантина).

Бронхолитики показаны при развитии синдрома спазма бронхов при бронхитах и бронхиолитах, который нарушает вентиляционную функцию легких, способствует развитию гипоксемии (снижению насыщения крови кислородом), задержке воспалительного выпота и развитию пневмонии. Арсенал средств, используемых для лечения бронхоспастических состояний, представлен ниже.

Симптоматические бронхолитики:

1) ипратропий (атровент, тревентол);

2) окситропий;

3) сальбутамол;

4) беротек (фенотерол);

5) бриканил.

Патогенентические средства:

1) теофиллин;

2) эуфиллин;

3) дипрофиллин;

4) теобиолонг;

5) теопек;

6) теолеп.

Комбинированные лекарственные препараты

1) теофедрин (теофедрин, теобромид, кофеин, амидопирин, фенацитин, эфедрина гидрохлорид, фенобарбитал, цитизин, экстракт красавки) по 1/2-1 таблетки 2-3 раза в день;

2) солутан (экстракт красавки жидкий, экстракт дурмана жидкий, экстракт примулы жидкий, эфедрина гидрохлорид, новокаин, натрия йодид, спирт этиловый) по 10-30 капель 3-4 раза в день.

Десенсибилизирующие средства (противоаллергические) используют в комплексной терапии ОРВИ в качестве противоаллергического компонента, а побочный снотворный эффект некоторых из них помогает бороться с нарушениями сна при выраженной интоксикации. В клинической практике для лечения гриппа и ОРЗ нашли свое применение димедрол, дипразин, диазолин, тавегил, супрастин, фенкарол, бикарфен, астемизол, фенирамина малеат, перитол.

Коррекция защитных функций макроорганизма складывается из мероприятий по улучшению функции системы местной бронхолегочной защиты и по показаниям иммуномодулирующей терапии.

Местная бронхолегочная защитная система включает в себя нормальную функцию мерцательного эпителия, нормальную микроциркуляцию, продукцию защитных факторов. Вирусы гриппа и других ОРЗ сами, а также развивающиеся при тяжелом течении неотложные состояния вызывают нарушение функции системы бронхолегочной защиты, что способствует внедрению в ткань инфекционного возбудителя и развитию в ней воспаления (пневмонии). Улучшение функции системы бронхолегочной защиты наступает при применении бромгексина (в таблетках по 8-16 мг 2-3 раза в день), амброксола, которые стимулируют образование сурфактанта - поверхностно‑активного вещества, препятствующего спадению альвеол и обладающего бактерицидностью.

← + Ctrl + →
Лечебное питание (диета) Симптоматическое лечение

Профессор А.Н. Евстропов, Новосибирская государственная медицинская академия

Введение

Острые респираторные вирусные инфекции (ОРВИ) — особая группа заболеваний, которая по своему удельному весу в структуре инфекционной патологии человека прочно занимает одно из ведущих мест. Более 200 вирусов могут быть причиной возникновения ОРВИ, что чрезвычайно затрудняет проведение диагностики.

Да и сам термин ОРВИ вряд ли соответствует требованиям, предъявляемым к этиологическому диагнозу инфекционного заболевания, что зачастую ведет к неоправданному или неуместному его употреблению в клинической практике, тем более, что, помимо вирусов, несколько десятков видов бактерий, хламидий, микоплазм способны поражать дыхательные пути.

Вместе с тем, на сегодняшний день сложились определенные представления об основных возбудителях ОРВИ, включающих представителей, как минимум, шести семейств, и цель настоящей публикации — познакомить практических врачей с этими данными.

Особенности строения и жизнедеятельности вирусов

Как известно, каждый отдельно взятый вирус (вирион) состоит из сердцевинной части, представленной комплексом нуклеиновой кислоты (РНК или ДНК) и белков — нуклеопротеида и оболочки, образованной белковыми субъединицами — капсида.

У ряда так называемых одетых вирусов имеется дополнительная мембраноподобная оболочка, включающая липиды и поверхностные гликопротеины, играющие важную роль в реализации инфекционных свойств вируса, определяющие его антигенность и иммуногенность.

Жизненный цикл подавляющего большинства вирусов представляет собой ряд последовательных этапов взаимодействия его с чувствительной клеткой, в результате которых генетический материал вируса проникает в клетку.

При этом все основные процессы жизнедеятельности клетки, в первую очередь — синтез нуклеиновых кислот и белков, оказываются под контролем вирусного генома. В результате за счет ресурсов клетки создаются основные компоненты вирионов, которые после самосборки покидают ее.

Не вдаваясь в детали чрезвычайно сложного процесса репродукции вирусов, остановимся на двух этапах — начальном и конечном. Первый представляет собой адсорбцию вируса на клетке и реализуется через взаимодействие с ее специфическими поверхностными рецепторами (для орто- и парамиксовирусов таковыми являются сиализированные гликолипиды, для риновирусов — молекулы внутриклеточной адгезии 1 типа и т.д.).

Таким образом, одним из свойств, объединяющих столь разнородную группу возбудителей ОРВИ, является их способность специфически взаимодействовать с клетками различных отделов респираторного тракта человека.

Конечный этап репродукции вирусов заключается в выходе из клетки с уже истощенными ресурсами и необратимо нарушенным обменом веществ огромного количества новых вирионов, которые вновь репродуцируются в интактных клетках. В результате — массовая гибель клеток респираторного тракта с проявлениями характерных для этого клинических симптомов, явлений общей интоксикации и всего того, что вкладывается врачами в понятие ОРВИ.

Как видно из данных, представленных в таблице 1, основными возбудителями ОРВИ человека являются представители шести семейств вирусов, краткая характеристика которых предлагается Вашему вниманию.

Семейство Ортомиксовирусы

Данное семейство включает наряду с прочими вирусы гриппа человека. С клинической точки зрения, включение гриппа в число ОРВИ вполне законно, поскольку это полностью соответствует проявлениям заболевания.

Однако способность данных вирусов вызывать глобальные вспышки — эпидемии и пандемии — давно уже вывела грипп в отдельную нозологическую единицу среди прочих ОРВИ, а проблема гриппозной инфекции, как и предсказывал академик В.М. Жданов перешла с человечеством в 21 век.

Позволим себе остановиться лишь на двух моментах проблемы гриппозной инфекции. Прежде всего — это уникальная способность вирусов гриппа А к изменению антигенной структуры поверхностных белков гемагглютинина (Н) и нейраминидазы (N).

Эти изменения могут быть точечными (дрейфовыми) либо кардинально меняющими антигенную структуру гемагглютинина или нейраминидазы (шифтовыми).

В результате первого варианта изменений человечество практически каждые 2-3 года сталкивается с измененным вариантом вируса гриппа А, в результате второго — появляется новый антигенный вариант вируса с интервалом в полтора-два десятилетия, и тогда на планете возникает пандемия гриппа.

Кроме того, особенностью современной ситуации является одновременная циркуляция в человеческой популяции двух вариантов вируса гриппа А (Н1N1 и Н3N2) и вируса гриппа В. Все это создает большие трудности при создании вакцин и осуществлении специфической профилактики данного заболевания.

Семейство Парамиксовирусы

Представители данного семейства — РНК-содержащие вирусы, покрытые суперкапсидной оболочкой. Род Парамиксовирусы этого семейства включает 4 серотипа вирусов парагриппа человека. Наиболее характерными признаками парагриппозной инфекции являются повышение температуры, ларингиты, бронхиты.

У детей 1 и 2 типы вызывают тяжелые ларингиты с острым отеком и развитием стеноза гортани (ложный круп). Серотип 3 вируса парагриппа чаще всего ассоциируется с оражениями нижних дыхательных путей (НДП).

Другой представитель семейства парамиксовирусов — респираторно-синцитиальный вирус (РС-вирус) снискал недобрую славу одного из основных возбудителей тяжелых поражений НДП у детей первого года жизни. РС-вирусная инфекция характеризуется постепенным началом, подъемом температуры с развитием бронхитов, бронхиолитов, пневмонии.

На этом фоне возможно формирование астматического синдрома, поскольку вирус-индуцированный синцитий, содержащий вирусный антиген, может являться пусковым моментом для развития аллергической реакции.

Общей особенностью парагриппа и РС-инфекции является отсутствие стойкого иммунитета, а высокий уровень антител в крови детей не является надежной гарантией против РС-вируса. В связи с этим данные вирусы представляют особую опасность, прежде всего для ослабленных детей, а вспышки могут протекать в виде внутрибольничных инфекций.

Семейство Коронавирусы

Семейство включает 13 видов вирусов: респираторные и энтеральные коронавирусы человека и животных. Респираторные коронавирусы человека представлены 4 серотипами, их геном представлен одноцепочечной РНК.

При коронавирусной инфекции чаще всего развивается острый профузный насморк, длящийся до 7 дней без повышения температуры. Возможны головная боль, кашель, фарингит. У детей болезнь имеет более тяжелое течение (бронхиты, пневмонии, лимфоаденит шейных узлов).

Коронавирусные инфекции носят сезонный характер и распространены в основном в осенне-зимний период. Заболевание часто имеет характер внутрисемейных и внутрибольничных вспышек.

Семейство Пикорнавирусы

В состав семейства входит 4 рода. Представители родов Риновирусы и Энтеровирусы включают возбудителей ОРВИ. Это мелкие вирусы, геном которых представлен молекулой РНК.

Род риновирусов является одним из самых многочисленных в царстве вирусов и содержит на сегодняшний день 113 серотипов. Считается, что риновирусы повинны не менее чем в половине всех случаев простудных заболеваний у взрослых.

Продолжительность болезни обычно не превышает 7 суток. У детей возможна лихорадка, у взрослых повышение температуры наблюдается редко. Как и все ОРВИ, риновирусная инфекция встречается в основном в холодное время года, а поскольку число серотипов огромно и перекрестный иммунитет отсутствует, возможны рецидивы заболевания в одном и том же сезоне.

Вирусы Коксаки В и отдельные серотипы ЕСНО, относящиеся к роду энтеровирусов, также способны вызывать ОРЗ, протекающие с лихорадкой, фарингитом, осложнениями в виде пневмонии и поражений плевры.

Семейство Реовирусы

Геном реовирусов представлен уникальной двунитевой РНК, кодирующей 10 генов, суперкапсидная оболочка отсутствует.

Различают три серотипа ортореовирусов, которые при воздушно-капельном пути передачи наиболее часто инфицируют новорожденных, детей до 6-месячного возраста, реже взрослых и после первичной репродукции в эпителии слизистой полости рта и глотки поражают респираторный тракт.

В связи с тем, что проявления реовирусной инфекции весьма разнообразны, этиологический диагноз можно поставить только на основе лабораторных тестов.

Семейство Аденовирусы

В отличие от предыдущих групп возбудителей ОРВИ геном аденовирусов представлен линейной молекулой двунитевой ДНК. Среди аденовирусов человека выявлено 47 серотипов, которые объединены в 7 групп. Некоторые серотипы аденовирусов (указаны в таблице) способны вызывать заболевания, характеризующиеся воспалением зева, увеличением миндалин, явлениями лихорадки и общего недомогания.

Иногда в процесс вовлекаются нижние дыхательные пути с развитием пневмонии. Поскольку аденовирусная инфекция может передаваться не только воздушно-капельным путем, но и при купании в бассейнах, возможны наряду с осенне-зимними, и летние вспышки этой инфекции.

Другой особенностью аденовирусов является их способность длительно сохраняться (персистировать) в клетках миндалин, в связи с чем аденовирусная инфекция у некоторых пациентов может принимать хроническую форму и длиться в течение ряда лет.

Заключение

В настоящее время, к сожалению, существует значительный разрыв между возможностями диагностики респираторных вирусных инфекций, предоставляемыми современными методами вирусологии и молекулярной биологии, и уровнем реализации этих возможностей в наших практических лабораториях.

Открытой проблемой остается также этиотропная терапия ОРВИ, поскольку арсенал лекарственных средств, активных против респираторных вирусов, на сегодняшний день ограничен.

45. Возбудители ОРВИ

Вирус парагриппа и РС-вирус относятся к семейству Paramyxoviridae.

Это вирусы сферической формы со спиральным типом симметрии. Средний размер вириона 100–800 нм. Имеют суперкапсидную оболочку с шиповидными отростками. Геном представлен линейной несегментированной молекулой РНК. РНК связана с мажорным (NP) белком.

Оболочка содержит три гликопротеида:

1) HN, обладающий гемагглютинирующей и нейраминидазной активностью;

2) F, ответственный за слияние и проявляющий гемолитическую и цитотоксическую активность;

3) М-белок.

Репликация вирусов полностью реализуется в цитоплазме клеток хозяина. Вирус парагриппа человека относится к роду Paramyxovirus. Для вирусов характерно наличие собственной РНК-зависимой РНК-полимеразы (транскриптазы).

На основании различий антигенной структуры HN, F и NP-белков вирусов парагриппа человека выделяют четыре основных серотипа.

Возбудитель репродуцируется в эпителии верхних отделов дыхательных путей, откуда проникает в кровоток.

Клинические проявления у взрослых чаще всего протекают в форме катаров верхних отделов дыхательных путей. У детей клиническая картина является более тяжелой.

Основной путь передачи вируса парагриппа – воздушно-капельный. Источником инфекции больной (или вирусоноситель).

Лабораторная диагностика:

1) экспресс-диагностика (ИФА);

2) выделение возбудителя в монослоях культур почек эмбриона человека или обезьян;

3) серодиагностика (РСК, РН, РТГА с парными сыворотками).

PC-вирус – основной возбудитель заболеваний нижних дыхательных путей у новорожденных и детей раннего возраста. Относится к роду Pneumovirus .

Характеризуется низкой устойчивостью, вирионы склонны к самораспаду.

Возбудитель реплицируется в эпителии воздухоносных путей, вызывая гибель зараженных клеток, проявляет выраженные иммуносупрессивные свойства.

PC-вирус вызывает ежегодные эпидемические инфекции дыхательных путей у новорожденных и детей раннего возраста; заражение взрослых возможно, но течение инфекции у них легкое или бессимптомное. Основной путь передачи – воздушно-капельный.

После выздоровления формируется нестойкий иммунитет.

Лабораторная диагностика:

1) экспресс-диагностика – определение антигенов вируса в носовом отделяемом с помощью ИФА;

2) специфические антигены выявляют в РСК и РН.

Этиотропная терапия не разработана.

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

3. Возбудители инфекций и их свойства Среди бактерий по способности вызывать заболевание выделяют:1) патогенные;2) условно-патогенные;3) сапрофитные.Патогенные виды потенциально способны вызывать инфекционное заболевание.Патогенность – это способность

Из книги Микробиология автора Ткаченко Ксения Викторовна

ЛЕКЦИЯ № 15. Возбудители кишечных инфекций – семейство энтеробактерий 1. Характеристика семейства энтеробактерий Семейство Enterobakteriaceae включает в себя многочисленных представителей, имеющих общее местообитание – кишечник.Энтеробактерии делят на:1) патогенные

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

1. Общая характеристика и возбудители ПТИ Пищевые токсикоинфекции (ПТИ) – обширная группа острых кишечных инфекций, развивающихся после употребления в пищу продуктов, инфицированных возбудителями и их токсинами.Клинически эти болезни характеризуются внезапным

Из книги автора

ЛЕКЦИЯ № 17. Возбудители зооантропонозных инфекций 1. Чума Возбудитель чумы относится к роду Yersinia, вид Y. pestis.Это грамотрицательные полиморфные мелкие палочки с закругленными концами. Они неподвижны. Спор не образуют. В организме больного и при размножении на питательных

Из книги автора

ЛЕКЦИЯ № 19. Грамотрицательные бактерии – возбудители гнойно-воспалительных заболеваний 1. Гемофильная палочка Семейство Pasterellaceae, род Haemophilus, вид H. influenza.Это мелкие или средних размеров прямые палочки, неспоробразующие, неподвижные, грамотрицательные, аэробы. В

Из книги автора

ЛЕКЦИЯ № 23. Возбудители ОРВИ 1. Вирусы гриппа Относятся к семейству ортомиксовирусов. Выделяют вирусы гриппа типов А, В и С.Вирус гриппа имеет сферическую форму, диаметр 80-120 нм. Нуклеокапсид спиральной симметрии, представляет собой рибонуклеопротеиновый тяж (белок NP),

Из книги автора

ЛЕКЦИЯ № 24. Возбудители вирусных воздушно-капельных инфекций 1. Вирусы кори и паротита Вирус эпидемического паротита и вирус кори относятся к семейству Paramixoviridae.Вирионы имеют сферическую форму диаметром 150–200 нм. В центре вириона расположен нуклеокапсид со спиральным

Из книги автора

ЛЕКЦИЯ № 28. Возбудители вирусных гепатитов 1. Вирус гепатита А Вирус гепатита А относится к семейству пикорнавирусов, роду энтеровирусов.Вирус гепатита А по морфологии сходен с другими представителями рода энтеровирусов. Геном образует однонитевая молекула +РНК; он

Из книги автора

3. Другие возбудители вирусных гепатитов Вирус гепатита С – РНК-содержащий вирус. Таксономическое положение его в настоящее время точно не определено; он близок к семейству флавивирусов.Представляет собой сферическую частицу, состоящую из нуклеокапсида, окруженного

Из книги автора

13. Возбудители инфекций и их свойства Среди бактерий по способности вызывать заболевание выделяют:1) патогенные виды потенциально способны вызывать инфекционное заболевание;Патогенность – это способность микроорганизмов, попадая в организм, вызывать в его тканях и

Из книги автора

46. Возбудители ОРВИ (Аденовирусы) Семейство Adenoviridae включает в себя два рода – Mastadenovirus (вирусы млекопитающих) и Aviadenovirus (вирусы птиц); в состав первого входит около 80 видов (сероваров), второго – 14.В семейство объединены вирусы с голым капсидом (отсутствует внешняя

Из книги автора

47. Возбудители ОРВИ (Риновирусы. Реовирусы) Риновирусы относятся к семействуPicornaviridae.Вирионы имеют сферическую форму и кубический тип симметрии. Размер 20–30 нм. Геном образован положительной молекулой РНК, которая не сегментирована. Капсидная оболочка состоит из 32

Из книги автора

55. Другие возбудители вирусных гепатитов Вирус гепатита С – РНК-содержащий вирус. Таксономическое положение его в настоящее время точно не определено; он близок к семейству флавивирусов.Представляет собой сферическую частицу, состоящую из нуклеокапсида, окруженного

Рассказать друзьям